Branching rules and even-dimensional rotation groups $\mathrm{SO}_{2 k}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 162405
(http://iopscience.iop.org/0305-4470/16/11/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:25

Please note that terms and conditions apply.

Branching rules and even-dimensional rotation groups $\mathbf{S O}_{\mathbf{2 k}}$

G R E Black and B G Wybourne
Physics Department, University of Canterbury, Christchurch 1, New Zealand

Received 21 December 1982

Abstract

Unambiguous methods are developed for calculating branching rules for the classical subgroups of the even-dimensional rotation group $\mathrm{SO}_{2 k}$. Complete results are given for the subgroups $\mathrm{SU}_{k} \times \mathrm{U}_{1}, \mathrm{SO}_{2 k-2} \times \mathrm{U}_{1}, \mathrm{SO}_{2 p} \times \mathrm{SO}_{2 q}$ and $\mathrm{SO}_{2 p+1} \times \mathrm{SO}_{2 q+1}$. A number of examples relevant to problems in supergravity and unification theories are given. A complete resolution of the antisymmetric powers of the basic spinor irrep of SO_{10} is given and the results extended to SO_{11}.

1. Introduction

The even-dimensional rotation groups $\mathrm{SO}_{2 k}$ are finding extensive application in many areas of physics. These applications require a detailed knowledge of the properties of the irreducible representations (irreps) of $\mathrm{SO}_{2 k}$ and have often been fraught with ambiguities that are associated with the peculiar properties of the irreps of $\mathrm{SO}_{2 k}$. Many results have been deduced by trial and error, with some remaining in error. It is the purpose of this paper to present, in an unambiguous way, branching rules for the tensor and spinor irreps of $\mathrm{SO}_{2 k}$ to important classical subgroups. Their application is illustrated by a number of examples that also serve to correct a number of erroneous or imprecise results already in the literature.

The character theory of the full orthogonal group O_{n} has been well studied for both spinor and tensor representations (Brauer and Weyl 1935, Murnaghan 1938, Littlewood 1950). The corresponding theory for $\mathrm{SO}_{2 k+1}$ requires only trivial modifications. The theory for $\mathrm{SO}_{2 k}$ is complicated by the existence of irreps that, while being non-equivalent, are conjugate to one another under an involutary outer automorphism involving a matrix of determinant -1 . These problems may be resolved by use of the properties of the Weyl weight spaces of the irreps but at the expense of obscuring the n dependence of the results. In many cases it is desirable to produce results that hold for all n. Furthermore, there is some advantage to be gained from the construction of explicit formulae for computing branching rules.

Throughout, we shall employ spinor and tensor methods rather than explicit weight-space constructions. These methods have considerable merit in physical applications and lead to a notation that is closer to the tools customarily used by physicists.

Spinor and tensor methods have been used very successfully (King 1975) to derive branching rule formulae for the embedding of one classical Lie group in another. The formulae all involve operations on S functions (Littlewood 1950, Wybourne 1970). King has given extensive results for the groups O_{n} and $\mathrm{SO}_{2 k+1}$ but omits any treatment of $\mathrm{SO}_{2 k}$ noting that these cases can best be dealt with by the method of difference
characters (Murnaghan 1938) or weight-space techniques. In view of the unprecedented interest in the groups $\mathrm{SO}_{2 k}$, it seems appropriate to extend King's study to the classical subgroups of $\mathrm{SO}_{2 k}$.

Our emphasis here is to present new results which are illustrated by examples relevant to problems in grand unification and supergravity theories. Branching rules for the importantgroup-subgroupcombinations $\mathrm{SO}_{2 k} \supset \mathrm{SU}_{k} \times \mathrm{U}_{1}, \mathrm{SO}_{2 k} \supset \mathrm{SO}_{2 k-2} \times \mathrm{U}_{1}$, $\mathrm{SO}_{2(p+q)} \supset \mathrm{SO}_{2 p} \times \mathrm{SO}_{2 q}$, and $\mathrm{SO}_{2(p+q+1)} \supset \mathrm{SO}_{2 p+1} \times \mathrm{SO}_{2 q+1}$ are given for both spinor and tensor irreps.

Branching rules arise in the group-subgroup restriction $G \downarrow H$. The inverse restriction $H \uparrow_{\mathrm{r}} G$ (King 1975) is considered and used to give general results for such cases as $\mathrm{SO}_{2 k} \uparrow_{r} \mathrm{SO}_{2 k+2}$ that arise in supergravity (Curtright 1982a, b). The novel inverse restriction $\mathrm{SO}_{2 k} \uparrow_{\mathrm{r}} \mathrm{SO}_{2 k+2} \times \mathrm{SU}_{2}$ is used to count the multiplicities of the $\mathrm{SO}_{2 k+2}$ irreps in $\mathrm{SO}_{2 k} \uparrow_{\mathrm{S}} \mathrm{SO}_{2 k+2}$ using the results of an earlier paper on the replication of irreps (Wybourne 1983).

Finally we discuss the resolution of the Kronecker powers of the basic spinor irrep of $\mathrm{SO}_{2 k}$ and give a complete procedure for unequivocally resolving all the powers of the $\mathbf{1 6}$ irrep of SO_{10}. Furthermore, we are led to a procedure for determining the multiplet content of the $d=10$ scalar superfield that ensures the equality of dimensions and Dynkin indices for the boson and fermion sectors thus eliminating earlier trial and error methods (Curtright 1982a, b) and correcting earlier results (Bergshoeff and DeRoo 1982).

The symmetrised powers of rotation groups have been reviewed extensively by King et al (1981). Complete, and unambiguous, algorithms for resolving the Kronecker products of the rotation groups have also been given (Black et al 1983). These two papers (abbreviated henceforth to KLW and BKW respectively) establish much of the notation used in this paper and will be referred to repeatedly. The principal results appear as tables whose derivations rest on the work contained in KLw, BKW and the pioneering work of King (1975).

2. Labelling of irreps

In this paper we shall primarily be interested in the classical compact semi-simple Lie algebras $\mathrm{A}_{k}, \mathrm{~B}_{k}, \mathrm{C}_{k}$, and D_{k} and their respective Lie groups $\mathrm{SU}_{k+1}, \mathrm{SO}_{2 k+1}, \mathrm{Sp}_{2 k}$ and $\mathrm{SO}_{2 k}$. The labelling of the irreps of these groups has been discussed in KLW and BKW and only essential details are given here. The irreps may be unambiguously labelled by specifying their maximal weights. Equivalent labels may be given either in terms of a set of k non-negative integers $a=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ labelling the nodes of the appropriate Dynkin diagram or in terms of suitably defined partitions $\boldsymbol{\lambda}=$ $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ (cf Wybourne 1974).

The standard partition labels for the irreps of the classical groups are given in table 1 following the notation given by bкw. The relationship between the partition labels $\boldsymbol{\lambda}$ and the Dynkin labels \boldsymbol{a} is given in table 2 after the manner of King and Al-Qubanchi (1981). In the latter table the irreps of SO_{n} are assumed to be labelled by partitions with the λ_{i} either all integers (tensor irreps) or all half-integers (spinor irreps).

We write for $\mathrm{SO}_{2 k}$ for $\lambda_{k}>0$

$$
\begin{equation*}
[\lambda]_{ \pm}=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k-1}, \pm \lambda_{k}\right] . \tag{1}
\end{equation*}
$$

Table 1. Standard labels for the irreps of the classical groups of rank k.

Group G	Label	Constraint
U_{n}	$\{\mu ; \lambda\}$	$p+q \leqslant n=k$
SU_{n}	$\{\lambda\}$	$p \leqslant n-1=k$
$\mathrm{SO}_{2 k+1}$	$[\lambda]$	$p \leqslant k$
	$[\Delta ; \lambda]$	$p \leqslant k$
$\mathrm{Sp}_{2 k}$	$\langle\lambda\rangle$	$p \leqslant k$
$\mathrm{SO}_{2 k}$	$[\lambda]$	$p<k$
	$[\lambda]_{+},[\lambda]_{-}$	$p=k$
	$[\Delta ; \lambda]_{+},[\Delta ; \lambda]_{-}$	$p \leqslant k$

$\lambda=\left(\lambda_{1} \lambda_{2} \ldots \lambda_{p}\right)$ with $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{p}>0$.
$\mu=\left(\mu_{1} \mu_{2} \ldots \mu_{q}\right)$ with $\mu_{1} \geqslant \mu_{2} \geqslant \ldots \geqslant \mu_{q}>0$.
λ_{i} and μ_{i} are positive integers for $i=1,2, \ldots, p$ and $j=1,2, \ldots q$ respectively.
Table 2. Relationship of Dynkin labels \boldsymbol{a} to partition labels $\boldsymbol{\lambda}$ for the classical Lie groups.

The spinor irreps will often be written for $\mathrm{SO}_{2 k+1}$ as

$$
\begin{equation*}
[\Delta ; \lambda]=\left[\lambda_{1}+\frac{1}{2}, \lambda_{2}+\frac{1}{2}, \ldots, \lambda_{k}+\frac{1}{2}\right] \tag{2}
\end{equation*}
$$

and for $\mathrm{SO}_{2 k}$ as

$$
\begin{equation*}
[\Delta ; \lambda]_{ \pm}=\left[\lambda_{1}+\frac{1}{2}, \lambda_{2}+\frac{1}{2}, \ldots, \pm \lambda_{k} \pm \frac{1}{2}\right] . \tag{3}
\end{equation*}
$$

Likewise tensor irreps of $\mathrm{SO}_{2 k}$ having k non-zero parts will often be written as

$$
\begin{equation*}
[\square ; \lambda]_{ \pm}=\left[\lambda_{1}+1, \lambda_{2}+1, \ldots, \pm \lambda_{k} \pm 1\right] \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
[\square ; 0]_{ \pm}=\square_{ \pm}=\left[1^{k-1}, \pm 1\right]=\left[1^{k}\right]_{ \pm} . \tag{5}
\end{equation*}
$$

The irreps of the unitary group U_{n} may be labelled as $\{\lambda\}$ (Littlewood 1950) where the partition λ serves to specify the symmetry properties of the corresponding l th-rank (l being the sum of the parts of λ) covariant tensor forming the basis of this representation. Along with these irreps, there are irreps associated with contravariant tensors labelled $\{\bar{\mu}\}$ and also irreps whose bases are mixed tensors labelled by $\{\bar{\mu} ; \lambda\}$. In this notation the λ partition is associated with l covariant indices of the basis tensor while the barred μ partition is associated with m contravariant indices. It is convenient to write

$$
\begin{equation*}
\{\overline{0} ; \lambda\}=\{\lambda\} \quad \text { and } \quad\{\bar{\mu} ; 0\}=\{\bar{\mu}\} . \tag{6}
\end{equation*}
$$

The U_{n} irreps $\{\bar{\mu} ; \lambda\}$ may be represented by composite Young diagrams (bкw $\S 2$).
The group U_{n} possesses a one-dimensional irrep $\varepsilon=\left\{1^{n}\right\}$ that maps each group element onto its determinant with

$$
\begin{equation*}
\bar{\varepsilon}=\varepsilon^{-1}=\left\{\overline{1^{n}}\right\} \tag{7}
\end{equation*}
$$

The product of ε with any other irrep of U_{n} is also an irrep of U_{n} and inequivalent irreps related by some power ε^{r} are said to be associated. If r is half an odd integer then the irrep of U_{n} is double valued, analogous to the spinor irreps of O_{n}.

Since under $\mathrm{U}_{n} \downarrow \mathrm{SU}_{n}$ we have $\varepsilon \downarrow\{0\}$ all mutually associated irreps of U_{n} give equivalent irreps of SU_{n} under this restriction. Moreover, each inequivalent irrep of SU_{n} may be denoted by a partition into less than n parts.

3. Modification rules

While the standard partition labels given in table 1 suffice to completely label the irreps of the classical compact Lie groups in many calculations, non-standard labels will arise. The equivalence relations between non-standard and standard labels are known as modification rules (Murnaghan 1938). These have been extensively discussed in BKW.

Modification rules involving simple equivalences are given in table $3(a)$. Those for $\mathrm{SO}_{2 k}$ reflect the reducibility of representations labelled by k-part partitions referred to earlier. The double primed symbols correspond to difference characteis (Murnaghan 1938, BKw § 5, KLW § 4).

The remaining modification rules relevant to this paper reduce the number of parts p in a partition where $p>k$ to yield a standard label or a null result. In each case the modification rules amount to removing from the appropriate Young diagram of the partition a continuous boundary of hook length h starting at the foot of the first column. The relevant set of modification rules of this type are given in table $3(b)$. These rules may be used repeatedly to yield finally either a signed standard irrep label or a null result. Detailed examples of their application are given in KLw and BKW.

Table 3. Modification rules.

(λ) and (μ) are partitions of p and q respectively. c and d are columns of (λ) and (μ) in which the boundary hook ends.

4. Branching rules

The derivation of branching rules given in this paper rests heavily on the results given by klw and bKw making extensive use of the properties of S functions, S-function series and the properties of difference characters. A proof for the branching rules for $\mathrm{SO}_{2 k} \downarrow \mathrm{U}_{k}$ has been sketched in BKw. Derivations for subgroups of O_{n} have been given by King $(1975,1982)$. The results given here are found in a similar manner. The decompositions of the vector [1], basic spinors $\Delta, \Delta_{ \pm}$and $\Delta^{\prime \prime}$, and of $\square, \square_{ \pm}$and \square " are first determined making use of identities given in KLW and bKw and the properties of weight spaces. S-function series are then symbolically manipulated as in BKW to finally yield the desired results.

In presenting our results, attention has been given to producing algorithms that avoid overcounting problems. These problems are signalled by the occurrence of explicit phase factors in the formulae. In the case of the spin irreps $[\Delta ; \lambda]_{ \pm}$it is always
possible to produce a final result free from explicit overcounting or requiring any use of difference characters. A similar situation holds for tensor irreps [λ] having fewer than k parts.

For tensor irreps $[\lambda]_{ \pm}$having k parts (or equivalently $[\square ; \lambda]_{ \pm}$) it is possible to produce formulae that avoid any use of difference characters but only at the expense of introducing severe overcounting. In these cases difference character methods become much more efficient and avoid explicit overcounting. The branching rules for the k-part reducible representation $[\lambda]$ and for the difference character $[\lambda]^{\prime \prime}$ are obtained and then the results combined noting that

$$
\begin{equation*}
[\lambda]=[\lambda]_{+}+[\lambda]_{-}, \quad[\lambda]^{\prime \prime}=[\lambda]_{+}-[\lambda]_{-} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
[\lambda]_{ \pm}=\frac{1}{2}\left([\lambda] \pm[\lambda]^{\prime \prime}\right) . \tag{9}
\end{equation*}
$$

The formulae given herein follow the notation given in BKW and the reader is referred to that paper for precise examples of the various letter designated S-function series (especially equation (4.5) and table 6 of BKw). These results are all incorporated in a computer package SCHUR devised by one of us (Black 1982). This program has been used to produce the examples given in this paper.

5. Branching rule for $\mathrm{SO}_{2 k} \downarrow \mathrm{SU}_{k} \times \mathbf{U}_{1}$

The branching rule for $\mathrm{SO}_{2 k} \downarrow \mathrm{U}_{k}$ was given in BKw. The corresponding rule for $\mathrm{SO}_{2 k} \downarrow \mathrm{SU}_{k} \times \mathrm{U}_{1}$ is given in table $4(a)$. Throughout we use $\omega_{\alpha}, \omega_{\beta}, \ldots$ to stand for the sum of parts of the corresponding partitions α, β, \ldots.

Consider the 560 -dimensional irrep of $\mathrm{SO}_{10}\left[\Delta ; 1^{2}\right]_{+}$under $\mathrm{SO}_{10} \downarrow \mathrm{SU}_{5} \times \mathrm{U}_{1}$. Referring to table $4(a)$ we have

$$
\begin{align*}
& {\left[\Delta ; 1^{2}\right]+\downarrow \sum_{s, \zeta, \beta}\left\{\overline{\zeta \cdot 1^{2 s}} ; 1^{2} / \zeta \beta\right\} \times\left\{2-2 \omega_{\zeta}-2 s-\omega_{\beta}+\frac{5}{2}\right\}} \\
& \quad=\sum_{s, \zeta}\left(\left\{\overline{\zeta \cdot 1^{2 s}} ; 1^{2} / \zeta\right\} \times\left\{\frac{9}{2}-2 \omega_{\zeta}-2 s\right\}+\left\{\overline{1^{2 s}}\right\} \times\left\{\frac{3}{2}-2 s\right\}\right) \tag{10a}
\end{align*}
$$

where β is restricted to $\{0\}$ and $\left\{1^{2}\right\}$ and (6) has been used. Summing over ζ gives (10a) as

$$
\begin{equation*}
\sum_{s}\left(\left\{\overline{1^{2 s}} ; 1^{2}\right\} \times\left\{\frac{9}{2}-2 s\right\}+\left\{\overline{1 \cdot 1^{2 s}} ; 1\right\} \times\left\{\frac{5}{2}-2 s\right\}+\left\{\overline{1^{2} \cdot 1^{2 s}}\right\} \times\left\{\frac{1}{2}-2 s\right\}\right) \tag{10b}
\end{equation*}
$$

with ζ being restricted to the partitions $\{0\},\{1\}$ and $\left\{1^{2}\right\}$. The summation over s is restricted by the modification rules to give (10b) as

$$
\begin{align*}
\left\{1^{2}\right\} \times\left\{\frac{9}{2}\right\}+\left\{\overline{1^{2}} ;\right. & \left.1^{2}\right\} \times\left\{\frac{5}{2}\right\}+\left\{\overline{1^{4}} ; 1^{2}\right\} \times\left\{\frac{1}{2}\right\}+\left\{\overline{1^{6}} ; 1^{2}\right\} \times\left\{-\frac{3}{2}\right\} \\
& +\{\overline{1} \cdot 1\} \times\left\{\frac{5}{2}\right\}+\left\{\overline{1 \cdot 1^{2}} ; 1\right\} \times\left\{\frac{1}{2}\right\}+\left\{\overline{1 \cdot 1^{4}} ; 1\right\} \times\left\{-\frac{3}{2}\right\} \\
& +\left\{\overline{1 \cdot 1^{6}} ; 1\right\} \times\left\{-\frac{7}{2}\right\}+\left\{\overline{1^{2}}\right\} \times\left\{\frac{1}{2}\right\}+\left\{\overline{1^{2} \cdot 1^{2}}\right\} \times\left\{-\frac{3}{2}\right\}+\left\{\overline{1^{2} \cdot 1^{4}}\right\} \times\left\{-\frac{7}{2}\right\} . \tag{10c}
\end{align*}
$$

The SU_{s} modification rules in table 3 are now used. Typically $\left\{\overline{1^{2}} ; 1^{2}\right\}=\left\{2^{2} 1\right\}$,
$\left\{\overline{1^{6}} ; 1^{2}\right\}=-\left\{\overline{1^{4}}\right\}=-\{1\}, \quad\left\{\overline{1^{4}} ; 1^{2}\right\}=0, \quad\left\{\overline{1 \cdot 1^{2}} ; 1\right\}=\left\{\overline{1^{3}} ; 1\right\}+\{\overline{21} ; 1\}=\{21\}+\left\{32^{2} 1\right\}, \quad$ etc, to give finally

$$
\begin{aligned}
{\left[\Delta ; 1^{2}\right]+\downarrow\left\{1^{2}\right\} } & \times\left\{\frac{9}{2}\right\}+\left(\left\{2^{2} 1\right\}+\left\{21^{3}\right\}+\{0\}\right) \times\left\{\frac{5}{2}\right\} \\
& +\left(\left\{32^{2} 1\right\}+\{21\}+2\left\{1^{3}\right\}\right) \times\left\{\frac{1}{2}\right\}+\left(\left\{31^{3}\right\}+\left\{2^{3}\right\}\right. \\
& \left.+\left\{2^{2} 1^{2}\right\}+\{1\}\right) \times\left\{-\frac{3}{2}\right\}+\left\{21^{2}\right\} \times\left\{-\frac{7}{2}\right\} .
\end{aligned}
$$

In a similar manner we find for the 3696 -dimensional irrep $\left[\square ; 1^{2}\right]_{+}$of SO_{10}

$$
\begin{aligned}
{\left[\square ; 1^{2}\right]_{+} \downarrow\left\{1^{2}\right\} } & \times\{7\}+\left(\left\{2^{2} 1\right\}+\left\{21^{3}\right\}+\{0\}\right) \times\{5\} \\
& +\left(\left\{3^{2} 2\right\}+\left\{32^{2} 1\right\}+\{21\}+2\left\{1^{3}\right\}\right) \times\{3\}+\left(\left\{43^{2} 1\right\}\right. \\
& \left.+\{321\}+\left\{31^{3}\right\}+2\left\{2^{3}\right\}+\left\{2^{2} 1^{2}\right\}+\{1\}\right) \times\{1\} \\
& +\left(\left\{42^{2} 1\right\}+\left\{3^{3}\right\}+\left\{3^{2} 21\right\}+\{31\}+2\left\{21^{2}\right\}\right) \times\{-1\} \\
& +\left(\left\{41^{3}\right\}+\left\{32^{2}\right\}+\left\{321^{2}\right\}+\{2\}\right) \times\{-3\}+\left\{31^{2}\right\} \times\{-5\} .
\end{aligned}
$$

We note that in the case of $\mathrm{SO}_{2 k} \downarrow \mathrm{U}_{k}$ and $\mathrm{SO}_{2 k} \downarrow \mathrm{SU}_{k} \times \mathrm{U}_{1}$ it has been possible to produce formulae even for the k-part tensor irrep that obviate the need to use difference characters.

Table 4. Branching rules.

(a) $\mathrm{SO}_{2 k}$	$\mathrm{SU}_{k} \times \mathrm{U}_{1}$
Δ	$\sum_{s}\left\{1^{k-s}\right\} \times\left\{\frac{1}{2} k-s\right\}$
$\Delta^{\prime \prime}$	$\sum_{s}(-1)^{s}\left\{1^{k-s}\right\} \times\left\{\frac{1}{2} k-s\right\}$
$\Delta_{ \pm}$	$\sum_{s_{ \pm}}\left\{1^{k-s \pm}\right\} \times\left\{\frac{1}{2} k-s_{ \pm}\right\}$
\square	$\sum_{s, 1}\left\{2^{k-s-2 t} 1^{2 t}\right\} \times\{k-2 s-2 t\}$
$\square \square^{\prime \prime}$	$\sum_{s, i}(-1)^{s}\left\{2^{k-s-2 t} 1^{2 t}\right\} \times\{k-2 s-2 t\}$
${ }^{\text {a }} \square_{ \pm}$	$\sum_{s_{t},:}\left\{2^{k-s_{ \pm}-2 t} 1^{2 t}\right\} \times\left\{k-2 s_{ \pm}-2 t\right\}$
$[\Delta ; \lambda]_{+}$	$\sum_{s, \zeta, \beta}\left\{\overline{\zeta \cdot 1^{2 s}} ; \lambda / \zeta \beta\right\} \times\left\{\omega_{\lambda}-2 \omega_{\xi}-2 s-\omega_{\beta}+\frac{1}{2} k\right\}$
$[\Delta ; \lambda]$	$\sum_{s, \zeta, \beta}\left\{\overline{\left\{\zeta \cdot 1^{2 s+1}\right.} ; \lambda / \zeta \beta\right\} \times\left\{\omega_{\lambda}-2 \omega_{\xi}-2 s-1-\omega_{\beta}+\frac{1}{2} k\right\}$
[λ]	$\sum_{\zeta, \beta}\{\bar{\zeta} ; \lambda / \zeta \beta\} \times\left\{\omega_{\lambda}-2 \omega_{\zeta}-\omega_{\beta}\right\} \quad p<k$
${ }^{\dagger}[\square ; A]_{ \pm}$	$\frac{1}{2} \sum_{\kappa, \omega, \beta}\left(1 \pm(-1)^{k+a}\right)\{\bar{\zeta} ;(\lambda / \zeta \beta) \cdot \bar{\omega}\} \times\left\{\omega_{\lambda}-2 \omega_{\xi}-\omega_{\beta}+\omega_{\omega}-k\right\}$

[^0]Table 4. (continued)

(b) $\mathrm{SO}_{2 k}$	$\downarrow \mathrm{SO}_{2 k-1}$
Δ	$\downarrow 2 \mathrm{~s}$
$\Delta^{\prime \prime}$	10
$\Delta_{ \pm}$	$\downarrow \Delta$
\square	$\downarrow 2\left[1^{k-1}\right]$
$\square{ }^{\prime \prime}$	$\downarrow 0$
$\square_{ \pm}$	$\downarrow\left[1^{k-1}\right]$
$[\Delta ; \lambda]_{ \pm}$	$\downarrow[\Delta ; \lambda / M]$
$[\lambda]$	$\downarrow[\lambda / M]^{\mathrm{a}}$
$[\lambda]_{ \pm}$	- $\frac{1}{2}[\lambda / M]^{\text {b }}$
${ }^{\mathrm{a}} \lambda_{k}=0,{ }^{\mathrm{b}} \lambda_{k} \neq 0$.	
(c) $\mathrm{SO}_{2 k}$	$\mathrm{SO}_{2 k-2} \times \mathrm{U}_{1}$
Δ	$\Delta \times\left(\left\{\frac{1}{2}\right\}+\left\{-\frac{1}{2}\right\}\right.$
$\Delta^{\prime \prime}$	$\Delta^{\prime \prime} \times\left(\left\{\frac{1}{2}\right\}-\left\{-\frac{1}{2}\right\}\right)$
$\Delta_{ \pm}$	$\Delta_{ \pm} \times\left\{\frac{1}{2}\right\}+\Delta_{ \pm} \times\left(-\frac{1}{2}\right\}$
\square	$\square \times(\{1\})+\{-1\})+2\left[1^{k-2}\right] \times\{0\}$
$\square{ }^{\prime \prime}$	$\square \times(\{1\}-\{-1\})$
$\square_{ \pm}$	$\square_{ \pm} \times\{1\}+\square_{\mp} \times\{-1\}+\left[1^{k-2}\right] \times[0]$
$[\Delta ; \lambda]_{ \pm}$	$\sum_{s . t}\left([\Delta ; \lambda / s \cdot t]_{ \pm} \times\left\{s-t+\frac{1}{2}\right\}+[\Delta ; \lambda / s \cdot t]=\times\left\{s-t-\frac{1}{2}\right\}\right\}$
[λ]	$\sum_{s, 1}[\lambda / s \cdot t] \times\{s-t\}$
$[\lambda]^{\prime \prime}$	$\sum_{s, 1}\left[\square ; \lambda / 1^{k} \cdot s \cdot t\right]^{\prime \prime} \times(\{s-t+1\}-\{s-t-1\})$

(d) $\mathrm{SO}_{2(p+q)} \downarrow$	$\mathrm{SO}_{2 p} \times \mathrm{SO}_{2 q}$
Δ	$\Delta \times \Delta$
$\Delta^{\prime \prime}$	$\Delta^{\prime \prime} \times \Delta^{\prime \prime}$
Δ_{7}	$\Delta_{+} \times \Delta_{ \pm}+\Delta_{-} \times \Delta_{ \pm}$
\square	$\square \times \square+2 \sum_{r=0}^{q-1}\left[1^{p-q+}\right] \times\left[1^{\prime}\right]$
Ј"	戓× \times 口
$\square_{ \pm}$	$\square_{+} \times \square_{ \pm}+\square_{-} \times \square_{F}+\sum_{r=0}^{p-1}\left[1^{p-q+r}\right] \times\left[1^{\prime}\right] \quad p \geqslant q$
$[\Delta ; \lambda]_{ \pm}$	$\sum_{\rho, \zeta}\left([\Delta ; \lambda / \zeta]_{+} \times[\Delta ; \zeta / \rho]_{ \pm--;} \omega_{\rho}+[\Delta ; \lambda / \zeta]-\times[\Delta ; \zeta / \rho]_{\left.\Psi_{1-6}, \omega_{\rho}\right)}\right.$
[λ]	$\sum_{\zeta}[\lambda / \zeta] \times[\zeta / D]$
$[\lambda]^{\prime \prime}$	$\sum_{\zeta}\left[\square ; \lambda / 1^{p+a} / \zeta\right]^{\prime \prime} \times[\square ; \zeta / B]^{\prime \prime}$

Table 4. (continued)

(e) $\mathrm{SO}_{2(p+a+1)} \downarrow$	$\mathrm{SO}_{2 p+1} \times \mathrm{SO}_{2 a+1}$
Δ	$2(\Delta \times \Delta)$
$\Delta^{\prime \prime}$	0
$\Delta_{ \pm}$	$\Delta \times \Delta$
\square	$2\left(\left[1^{p}\right] \times\left[1^{a}\right]\right)$
$\square^{\prime \prime}$	0
$\square_{ \pm}$	$\left[1^{p}\right] \times\left[1^{a}\right]$
$[\Delta ; \lambda]_{ \pm}$	$\sum_{\zeta, \rho}[\Delta ; \lambda / \zeta] \times[\Delta ; \zeta / \rho]$
$[\lambda]$	$\sum_{\zeta}[\lambda / \zeta] \times[\zeta / D]^{\mathrm{a}}$
$[\lambda]_{ \pm}$	$\frac{1}{2} \sum_{\zeta}[\lambda / \zeta] \times[\zeta / D]^{\mathrm{b}}$

${ }^{2} \lambda_{p+q+1}=0$.
${ }^{\mathrm{b}} \lambda_{p+a+1} \neq 0$.

6. Branching rules for $\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{2 k-1}$ and $\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{2 k-2} \times \mathrm{U}_{1}$

These branching rules are given in tables $4(b)$ and $4(c)$. In the case of $\mathrm{SO}_{10} \downarrow \mathrm{SO}_{9}$ we have

$$
[\Delta ; 21]_{ \pm} \downarrow[\Delta ; 21]+[\Delta ; 2]+\left[\Delta ; 1^{2}\right]+[\Delta ; 1]
$$

and

$$
\left[\Delta ; 1^{5}\right]_{ \pm} \downarrow\left[\Delta ; 1^{5}\right]+\left[\Delta ; 1^{4}\right]
$$

but for SO_{9} the modification rules give $\left[\Delta ; 1^{5}\right]=0$ and hence

$$
\left[\Delta ; 1^{5}\right]_{ \pm} \downarrow\left[\Delta ; 1^{4}\right]
$$

In a similar way under $\mathrm{SO}_{10} \downarrow \mathrm{SO}_{9}$

$$
\left[21^{4}\right]_{ \pm} \downarrow \frac{1}{2}\left(\left[21^{4}\right]+\left[21^{3}\right]+\left[1^{5}\right]+\left[1^{4}\right]\right)=\left[21^{3}\right]+\left[1^{4}\right]
$$

The $\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{2 k-2} \times \mathrm{U}_{1}$ branching rule for the spinor irrep of $\mathrm{SO}_{2 k}$ may be evaluated without recourse to difference characters. Thus

$$
\begin{aligned}
{\left[\Delta ; 21^{4}\right]_{+} \downarrow \sum_{s, t} } & \left(\left[\Delta ; 21^{4} / s t\right]_{+} \times\left\{s-t+\frac{1}{2}\right\}+\left[\Delta ; 21^{4} / s t\right]_{-} \times\left\{s-t-\frac{1}{2}\right\}\right) \\
= & \sum_{t}\left(\left[\Delta ; 21^{4} / t\right]_{+} \times\left\{\frac{1}{2}-t\right\}+\left(\left[\Delta ; 21^{3} / t\right]_{+}+\left[\Delta ; 1^{5}\right]_{+}\right)\right. \\
& \times\left\{\frac{3}{2}-t\right\}+\left[\Delta ; 1^{4} / t\right]_{+} \times\left\{\frac{5}{2}-t\right\}+\ldots \\
= & {\left[\Delta ; 21^{4}\right]_{+} \times\left\{\frac{1}{2}\right\}+\left(\left[\Delta ; 21^{3}\right]_{+}+\left[\Delta ; 1^{5}\right]_{+}\right) \times\left\{-\frac{1}{2}\right\}+\left[\Delta ; 1^{4}\right]_{+} \times\left\{-\frac{3}{2}\right\} } \\
& +\left(\left[\Delta ; 21^{3}\right]_{+}+\left[\Delta ; 1^{5}\right]_{+}\right) \times\left\{\frac{3}{2}\right\}+\left(\left[\Delta ; 21^{2}\right]_{+}+\left[\Delta ; 1^{4}\right]_{+}\right) \times\left\{\frac{1}{2}\right\}+\left[\Delta ; 1^{3}\right]_{+} \times\left\{-\frac{1}{2}\right\} \\
& +\left[\Delta ; 1^{4}\right]_{+} \times\left\{\left\{\frac{5}{2}\right\}+\left[\Delta ; 1^{3}\right]_{+} \times\left\{\frac{3}{2}\right\}+\ldots\right.
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[\Delta ; 1^{4}\right]_{+} \times\left\{\frac{5}{2}\right\}+\left(\left[\Delta ; 21^{3}\right]_{+}+\left[\Delta ; 1^{5}\right]_{+}+\left[\Delta ; 1^{3}\right]_{+}\right) \times\left\{\frac{3}{2}\right\} } \\
& +\left(\left[\Delta ; 21^{4}\right]_{+}+\left[\Delta ; 21^{2}\right]_{+}+2\left[\Delta ; 1^{4}\right]_{+}\right) \times\left\{\frac{1}{2}\right\}+\left(\left[\Delta ; 21^{3}\right]_{+}+\left[\Delta ; 1^{5}\right]_{+}\right. \\
& \left.\left.+\left[\Delta ; 1^{3}\right]_{+}\right) \times\left\{-\frac{1}{2}\right\}+\left[\Delta ; 1^{4}\right]_{+}\right) \times\left\{-\frac{3}{2}\right\}+\ldots
\end{aligned}
$$

where the extra terms ... are obtained by replacing the + subscript by a - subscript in the printed terms and subtracting 1 from each U_{1} irrep label. The above result holds for all $k \geqslant 6$ without modification. For $\mathrm{SO}_{10} \downarrow \mathrm{SO}_{8} \times \mathrm{U}_{1}$ the SO_{8} irrep having five parts must be modified to give

$$
\begin{aligned}
{\left[\Delta ; 1^{5}\right]_{+}=-\left[\Delta ; 1^{4}\right]_{-}, } & {\left[\Delta ; 1^{5}\right]_{-}=-\left[\Delta ; 1^{4}\right]_{+}, } \\
{\left[\Delta ; 21^{4}\right]_{+}=-\left[\Delta ; 21^{3}\right]_{-}, } & {\left[\Delta ; 21^{4}\right]_{-}=-\left[\Delta ; 21^{3}\right]_{+} }
\end{aligned}
$$

to yield for $\mathrm{SO}_{10} \downarrow \mathrm{SO}_{8} \times \mathrm{U}_{1}$

$$
\begin{aligned}
& {\left[\Delta ; 21^{4}\right]_{+} \downarrow\left[\Delta ; 1^{4}\right]_{+} \times\left\{\frac{5}{2}\right\}+\left(\left[\Delta ; 21^{3}\right]_{+}+\left[\Delta ; 1^{3}\right]_{+}\right) \times\left\{\frac{3}{2}\right\}+\left(\left[\Delta ; 21^{2}\right]_{+}\right.} \\
&\left.+\left[\Delta ; 1^{4}\right]_{+}+\left[\Delta ; 1^{3}\right]_{-}\right) \times\left\{\frac{1}{2}\right\}+\left(\left[\Delta ; 1^{3}\right]_{+}+\left[\Delta ; 21^{2}\right]_{-}+\left[\Delta ; 1^{4}\right]_{-}\right) \times\left\{-\frac{1}{2}\right\} \\
&+\left(\left[\Delta ; 21^{3}\right]_{-}+\left[\Delta ; 1^{3}\right]_{-}\right) \times\left\{-\frac{3}{2}\right\}+\left[\Delta ; 1^{4}\right]_{-} \times\left\{-\frac{5}{2}\right\} .
\end{aligned}
$$

The branching rules for the k-part tensor irreps of $\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{2 k-2} \times \mathrm{U}_{1}$ are found by first restricting $[\lambda]$ and $[\lambda]^{\prime \prime}$ and then combining the results using (9). Thus for $\mathrm{SO}_{10} \downarrow \mathrm{SO}_{8} \times \mathrm{U}_{1}:$

$$
\left[21^{4}\right] \downarrow\left[1^{4}\right] \times\{2\}+\left[21^{3}\right] \times\{1\}+2\left[1^{4}\right] \times\{0\}+\left[21^{3}\right] \times\{-1\}+\left[1^{4}\right] \times\{-2\}
$$

and

$$
\left[21^{4}\right]^{\prime \prime} \downarrow\left[1^{4}\right]^{\prime \prime} \times\{2\}+\left[21^{3}\right]^{\prime \prime} \times\{1\}-\left[21^{3}\right]^{\prime \prime} \times\{-1\}-\left[1^{4}\right]^{\prime \prime} \times\{-2\}
$$

and hence

$$
\begin{aligned}
{\left[21^{4}\right]_{+}=\frac{1}{2}\left(\left[21^{4}\right]\right.} & \left.+\left[21^{4}\right]^{\prime \prime}\right) \downarrow\left[1^{4}\right]_{+} \times\{2\}+\left[21^{3}\right]_{+} \times\{1\} \\
& +\left(\left[1^{4}\right]_{+}+\left[1^{4}\right]_{-}\right) \times\{0\}+\left[21^{3}\right]_{-} \times\{-1\}+\left[1^{4}\right]_{-} \times\{-2\}
\end{aligned}
$$

7. Branching rules for $\mathbf{S O}_{2(p+q)} \downarrow \mathbf{S O}_{\mathbf{2 p}} \times \mathbf{S O}_{\mathbf{2 q}}$

These branching rules are given in table $4(d)$. Their evaluation follows closely the methods used in the preceding section. Typically, for $\mathrm{SO}_{10} \downarrow \mathrm{SO}_{6} \times \mathrm{SO}_{4}$ we have

$$
\begin{aligned}
{[\Delta ; 2]_{+} \downarrow[\Delta ; 0]_{-} } & \times[\Delta ; 2]_{-}+[\Delta ; 0]_{+} \times[\Delta ; 2]_{+}+[\Delta ; 1]_{-} \times[\Delta ; 1]_{-}+[\Delta ; 1]_{+} \\
& \times[\Delta ; 1]_{+}+[\Delta ; 0]_{-} \times[\Delta ; 1]_{+}+[\Delta ; 0]_{+} \times[\Delta ; 1]_{-}+[\Delta ; 2]_{-} \\
& \times[\Delta ; 0]_{-}+[\Delta ; 2]_{+} \times[\Delta ; 0]_{+}+[\Delta ; 1]_{-} \times[\Delta ; 0]_{+} \\
& +[\Delta ; 1]_{+} \times[\Delta ; 0]_{-}+[\Delta ; 0]_{+} \times[\Delta ; 0]_{-}+[\Delta ; 0]_{+}[\Delta ; 0]_{+}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[21^{4}\right]_{+} \downarrow\left[21^{2}\right]_{+} } & \times\left[1^{2}\right]_{+}+\left[21^{2}\right]_{-} \times\left[1^{2}\right]_{-}+[21] \times[1]+[2] \times[0]+\left[1^{3}\right]_{+} \times\left([21]_{+}+[1]\right) \\
& +\left[1^{3}\right]_{-} \times\left([21]_{-}+[1]\right)+\left[1^{2}\right] \times\left([2]+\left[1^{2}\right]_{+}+\left[1^{2}\right]_{-}+[0]\right)+[1] \times[1] .
\end{aligned}
$$

8. Branching rules for $\mathrm{SO}_{2(p+q+1)} \downarrow \mathrm{SO}_{2 p+1} \times \mathrm{SO}_{\mathbf{2 q + 1}}$

These branching rules are summarised in table $4(e)$ and present no special problems in their applications. Typically for $\mathrm{SO}_{12} \downarrow \mathrm{SO}_{7} \times \mathrm{SO}_{5}$

$$
\begin{aligned}
& {[\Delta ; 21]+\downarrow[\Delta ; 0] \times\left([\Delta ; 21]+[\Delta ; 2]+\left(\Delta ; 1^{2}\right]+2[\Delta ; 1]+[\Delta ; 0]\right) } \\
&+ {[\Delta ; 1] \times\left([\Delta ; 2]+\left[\Delta ; 1^{2}\right]+2[\Delta ; 1]+2[\Delta ; 0]\right) } \\
&+ {[\Delta ; 2] \times([\Delta ; 1]+[\Delta ; 0])+\left[\Delta ; 1^{2}\right] \times([\Delta ; 1]+[\Delta ; 0])+[\Delta ; 21] \times[\Delta ; 0] }
\end{aligned}
$$

and

$$
\begin{aligned}
{[\square ; 1]+\downarrow\left[1^{3}\right] } & \times\left([21]+\left[1^{2}\right]+[1]\right)+\left[21^{2}\right] \times\left[1^{2}\right]+[21] \times[1] \\
& +\left[1^{2}\right] \times\left([2]+\left[1^{2}\right]+[0]\right)+[1] \times[1]+[2] \times[0] .
\end{aligned}
$$

9. The inverse of restriction \uparrow_{r}

Branching rules are normally associated with the group-subgroup restriction $G \downarrow H$. The inverse of restriction $G \uparrow_{r} H$ has been considered by King (1975) and finds applications in supersymmetry theories (cf Curtright 1982a, b). Clearly the operation \uparrow_{r} is defined only over classes common to G and H and is not necessarily unique. Important cases of \uparrow_{r} for rotation groups are given in table 5 . The inverse of restriction

Table 5. Inverses of restriction for rotation groups.

$\mathrm{SO}_{2 k}$	\uparrow	$\mathrm{SO}_{2 k+1}$
$[\Delta ; \lambda]$		$[\Delta ; \lambda / L]$
[λ]		[$\lambda / L]$
$\mathrm{SO}_{2 k+1}$	\dagger_{r}	$\mathrm{SO}_{2 k+2}$
$[\Delta ; \lambda]$		$\sum_{m}\left[\lambda ; \lambda / 1^{m} R\right]_{ \pm t-1}{ }^{m}$
[λ]		[$\lambda / L]$
$\mathrm{SO}_{2 k}$	$\uparrow r$	$\mathrm{SO}_{2 k+2}$
$[\Delta ; \lambda]$		$\sum_{m}\left[\Delta ; \lambda / 1^{m} R\right]_{t(-)^{m}}$
[λ]		[$\lambda / L L]$
$\mathrm{SO}_{2 k}$	\dagger_{r}	$\mathrm{SO}_{2 \mathrm{k}+2} \times \mathrm{SU}_{2}$
[λ]		$\sum_{\zeta}(-1)^{\zeta}[\lambda / \zeta] \times\{\tilde{\zeta}\}$
$[\Delta ; \lambda]$		$\left.\sum_{m, \zeta}(-1)^{z}\left[\Delta ; \lambda / 1^{m} \zeta P\right]_{ \pm(-1}\right)^{m \times\{\bar{\zeta}\}}$
$\mathrm{SO}_{2 k+1}$	\uparrow_{r}	$\mathrm{SO}_{2 k+3} \times \mathrm{SU}_{2}$
[λ]		$\sum_{\zeta}(-1)^{\xi}[\Delta / \xi] \times\{\dot{\xi}\}$
$2[\Delta ; \lambda]$		$\sum_{\zeta}(-1)^{\zeta}[\Delta ; \lambda / \zeta] \times\{\tilde{\zeta}\}$

for $\mathrm{SO}_{2 k}$ requires the use of reducible representations in the case of spinor representations or tensor representations having k parts. Thus for $\mathrm{SO}_{2 k} \uparrow_{r} \mathrm{SO}_{2 k+1}$ we have

$$
[\Delta ; \lambda]=[\Delta ; \lambda]_{+}+[\Delta ; \lambda]_{-} \uparrow_{r}[\Delta ; \lambda / L]
$$

For example

$$
[\Delta ; 21] \uparrow_{\mathrm{r}}[\Delta ; 21]-[\Delta ; 2]-\left[\Delta ; 1^{2}\right]+[\Delta ; 1] .
$$

We note that under \uparrow_{r} the need for modification rules never arises.
Under $\mathrm{SO}_{2 k+1} \uparrow_{\mathrm{r}} \mathrm{SO}_{2 k+2}$ we may take either $\Delta \uparrow_{\mathrm{r}} \Delta_{+}$or $\Delta \uparrow_{\mathrm{r}} \Delta_{-}$. The choice of \pm in table 5 reflects this ambiguity.

The operations $\mathrm{SO}_{2 k} \uparrow_{\mathrm{r}} \mathrm{SO}_{2 k+2} \times \mathrm{SU}_{2}$ and $\mathrm{SO}_{2 k+1} \uparrow_{\mathrm{r}} \mathrm{SO}_{2 k+3} \times \mathrm{SU}_{2}$ are somewhat novel. The labels of the irreps of SU_{2} can all be reduced to one part by noting the equivalence

$$
\left\{\lambda_{1} \lambda_{2}\right\}=\left\{\lambda_{1}-\lambda_{2}\right\} .
$$

A given SU_{2} irrep $\{a\}$ is of dimension $a+1$. Thus the 'group' SU_{2} plays the role of a 'multiplicity counting group' (Wybourne 1983).

The S-function series P, L and R are defined in klw and BKw. Note that $R=P L$ and

$$
\begin{aligned}
L L= & \sum_{n=0} \sum_{m=0}^{[n / 2]}(-1)^{n}(n+1-2 m)\left\{2^{m} 1^{n-2 m}\right\} \\
& =\{0\}-2\{1\}+3\left\{1^{2}\right\}+\{2\}-4\left\{1^{3}\right\}-2\{21\}+5\left\{1^{4}\right\}+3\left\{21^{2}\right\}+\left\{2^{2}\right\}-\ldots
\end{aligned}
$$

For $\mathrm{SO}_{10} \uparrow \mathrm{SO}_{12}$ we have

$$
\begin{aligned}
{\left[21^{4}\right]_{+}+\left[21^{4}\right]_{-} } & \uparrow_{r}\left[21^{4} / L L\right] \\
= & {\left[21^{4}\right]+3\left[21^{2}\right]+4\left[1^{4}\right]+5[2]+8\left[1^{2}\right]+5[0] } \\
& -\left(2\left[21^{3}\right]+2\left[1^{5}\right]+4[21]+6\left[1^{3}\right]+10[1]\right)
\end{aligned}
$$

which is identical to Curtright's (1982a, b) result. Curtright divides his SO_{12} irrep into primary gauge and accompanying ghost fields. It is interesting to note that for boson states his primary gauge fields correspond to the terms in $[\lambda / K]$ where K is the S-function series

$$
\begin{equation*}
K=\{0\}+\{2\}+\left\{2^{2}\right\}+\left\{2^{3}\right\}+\ldots \tag{11}
\end{equation*}
$$

The fermionic spinor cases are complicated by the presence of the \pm subscripts that distinguish conjugate irreps. However, the distinction is effectively lost under \uparrow_{r}. As a consequence a reducible representation $[\Delta ; \lambda]$ of $\mathrm{SO}_{2 k}$ may be expanded to $\mathrm{SO}_{2 k+2}$ by simply writing

$$
\begin{equation*}
[\Delta ; \lambda] \uparrow_{\mathrm{r}}[\Delta ; \lambda / L L]_{ \pm} \tag{12}
\end{equation*}
$$

which is significantly simpler than the result given in table 5 . It is important to realise that while the various results for $\mathrm{SO}_{2 k} \uparrow_{\mathrm{r}} \mathrm{SO}_{2 k+2}$ appear to involve different representations of $\mathrm{SO}_{2 k+2}$ in fact they still preserve the various dimension and Dynkin index sum rules. Thus for example, table 5 leads to the expansion of $[\Delta ; 21]$ under
$\mathrm{SO}_{10} \uparrow_{\mathrm{r}} \mathrm{SO}_{12}$ as

$$
\begin{array}{r}
{[\Delta ; 21] \uparrow_{\mathrm{r}}[\Delta ; 21]_{+}+[\Delta ; 2]_{-}+\left[\Delta ; 1^{2}\right]_{-}+10[\Delta ; 1]_{+}+9[\Delta ; 0]_{-}} \\
-\left(3[\Delta ; 2]_{+}+3[\Delta ; 1]_{+}+6[\Delta ; 1]_{-}+11[\Delta ; 0]_{+}\right)
\end{array}
$$

while use of (12) gives

$$
[\Delta ; 21] \uparrow_{r}[\Delta ; 21]_{+}+4[\Delta ; 1]_{+}-2\left([\Delta ; 2]_{+}+\left[\Delta ; 1^{2}\right]_{+}+[\Delta ; 0]_{+}\right)
$$

Curtwright (1982a, b) gives

$$
\begin{aligned}
{[\Delta ; 21] \uparrow_{r}[\Delta ;} & 21]_{-}+[\Delta ; 2]_{+}+\left[\Delta ; 1^{2}\right]_{+}+2[\Delta ; 1]_{-}+[\Delta, 0]_{+} \\
& -\left(2[\Delta ; 2]_{-}+2\left[\Delta ; 1^{2}\right]_{-}+2[\Delta ; 1]_{+}+2[\Delta ; 0]_{-}+[\Delta ; 2]_{+}+\left[\Delta ; 1^{2}\right]_{+}+[\Delta ; 0]_{+}\right) \\
& +2[\Delta ; 1]_{-}+2[\Delta ; 1]_{+}
\end{aligned}
$$

Each of the above results satisfies the dimension and Dynkin index sum rules. Since these sum rules do not distinguish members of a conjugate pair they can be satisfied by any arrangement of the \pm subscripts.

Curtright's results were checked using the program sChur to perform the restriction $\mathrm{SO}_{12} \downarrow \mathrm{SO}_{2} \times \mathrm{SO}_{10}$ which is a special case of the results given in tible 4(e) for $\mathrm{SO}_{2(p+q)} \downarrow \mathrm{SO}_{2 p} \times \mathrm{SO}_{2 q}$. Since schur can handle strings of irreps this proved a simple task and confirmed all of Curtright's results.

10. Symmetrised powers of basic spinor irreps

The resolution of the symmetrised powers of the basic spin irreps Δ and $\Delta_{ \pm}$of $\mathrm{SO}_{2 k+1}$ and $\mathrm{SO}_{2 k}$ respectively has been discussed by kLw who gave a complete algorithm for up to the fourth power for all k (see also King and Wybourne 1982). In general these resolutions correspond to evaluation of the spinor plethysms (cf Littlewood 1947, 1948, 1950)

$$
\begin{equation*}
\Delta \otimes\{\lambda\} \quad \text { for } \mathrm{SO}_{2 k+1} \tag{13a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{ \pm} \otimes\{\lambda\} \quad \text { for } \mathrm{SO}_{2 k} \tag{13b}
\end{equation*}
$$

where for the p th power in Δ (or $\Delta_{ \pm}$) $\{\lambda\}$ is a partition of p.
Equivalently, the evaluation of the above spinor plethysms can be regarded as an evaluation of the branching rules for the unitary group irrep $\{\lambda\}$ under the restriction

$$
\begin{equation*}
\mathrm{U}_{2^{k}} \downarrow \mathrm{SO}_{2 k+1} \quad \text { where } \quad\{1\} \downarrow \Delta \tag{14a}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{U}_{2^{k-1}} \downarrow \mathrm{SO}_{2 k} \quad \text { where } \quad\{1\} \downarrow \Delta_{ \pm} \tag{14b}
\end{equation*}
$$

where in $(14 b)$ if we choose $\{1\} \downarrow \Delta_{+}$then $\{\overline{1}\} \downarrow \Delta_{-}$. The plethysms $\Delta \otimes\left\{1^{n}\right\}$ or $\Delta_{ \pm} \otimes\left\{1^{n}\right\}$ correspond to the reduction of an antisymmetric tensor $\left\{1^{n}\right\}$ under the rotation group-a problem of considerable relevance in supersymmetric theories (Bergshoeff and DeRoo 1982). Such a problem may also be viewed as taking a set of fermions spanning Δ (or $\Delta_{ \pm}$) and forming all possible antisymmetric states. The terms with n even yield tensor irreps while those with n odd yield spinor irreps. The complete set of states span the vector irrep $\{1\}$ of $\mathrm{SU}_{2 \alpha}$ where $\alpha=2^{k}$ for $\mathrm{SO}_{2 k+1}$ or $2^{(k-1)}$ for $\mathrm{SO}_{2 k}$.

Under the restriction $\mathrm{SU}_{2 \alpha} \downarrow \mathrm{SO}_{\alpha+1}$ we have (Wybourne 1974)

$$
\begin{equation*}
\{1\} \downarrow \Delta . \tag{15}
\end{equation*}
$$

Further restriction to SO_{α} gives

$$
\begin{equation*}
\{1\} \downarrow \Delta \downarrow \Delta_{+}+\Delta_{-} . \tag{16}
\end{equation*}
$$

These two irreps, Δ_{+}and Δ_{-}, have the same dimensions and set of Dynkin indices. Still further restriction to $\mathrm{SU}_{2^{k-1}}$ (or $\mathrm{SU}_{2^{k-2}}$) is possible using the $\mathrm{SO}_{2 p} \downarrow \mathrm{U}_{p}$ rule to give

$$
\begin{equation*}
\Delta_{+} \downarrow\{0\}+\left\{1^{2}\right\}+\ldots+\left\{1^{P}\right\} \tag{17a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{-} \downarrow\{1\}+\left\{1^{3}\right\}+\ldots+\left\{1^{P-1}\right\} \tag{17b}
\end{equation*}
$$

giving equality between the boson and fermion states with corresponding assurance of equal Dynkin index summations in both sectors (Curtright 1982a, Ferrara et al 1981).

Finally the reduction $\mathrm{SU}_{2^{k-1}} \downarrow \mathrm{SO}_{2 k+1}$ (or $\mathrm{SU}_{2^{k-2}} \downarrow \mathrm{SO}_{2 k}$) may be made by evaluating the spinor plethysm $\Delta \otimes\left\{1^{n}\right\}$ (or $\Delta_{ \pm} \otimes\left\{1^{n}\right\}$).

In the specific case of the 16 -dimensional irrep Δ_{+}of SO_{10} we have the group chain

$$
\mathrm{U}_{65536} \downarrow \mathrm{SO}_{33} \downarrow \mathrm{SO}_{32} \downarrow \mathrm{SU}_{16} \downarrow \mathrm{SO}_{10}
$$

Under $\mathrm{SO}_{32} \downarrow \mathrm{SU}_{16}$ we have

$$
\begin{equation*}
\Delta_{+} \downarrow\{0\}+\left\{1^{2}\right\}+\left\{1^{4}\right\}+\ldots+\left\{1^{16}\right\} \tag{18a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta-\downarrow\{1\}+\left\{1^{3}\right\}+\left\{1^{5}\right\}+\ldots+\left\{1^{15}\right\} \tag{18b}
\end{equation*}
$$

The reductions for $\mathrm{SU}_{16} \downarrow \mathrm{SO}_{10}$ may be readily deduced by first using KLW to evaluate $\Delta_{+} \otimes\left\{1^{n}\right\}$ for $n \leqslant 4$. The case for $n=5$ to 8 can be constructed from these results using the results of $\mathrm{BK} \boldsymbol{\mathrm { w }}$ to evaluate Kronecker products. We give the results for $n=0$ to 8 in table 6 . The terms for $n>8$ can be found by recalling the involutory outer-automorphism ${ }^{+}$for $\mathrm{SO}_{2 k}$ which gives

$$
\begin{equation*}
\Delta_{+} \otimes\left\{1^{16-n}\right\}=\left(\Delta_{+} \otimes\left\{1^{n}\right\}\right)^{+} \tag{19}
\end{equation*}
$$

recalling that under ${ }^{+}$we have

$$
\begin{equation*}
\left([\lambda]_{ \pm}\right)^{*}=[\lambda]_{\mp} \tag{20}
\end{equation*}
$$

The results in table 6 are in agreement with the results of Bergshoeff and DeRoo (1982) but with the important difference that the ambiguity between the $[\lambda]_{ \pm}$irreps is removed.

We note that once $\Delta_{+} \otimes\left\{1^{n}\right\}$ over all compatible n is known then any other symmetrised power of Δ_{+}, say $\Delta_{+} \otimes\{\lambda\}$, may be evaluated since any S function $\{\lambda\}$ may be expanded as a sum of products of the S functions $\left\{1^{x}\right\}$ and furthermore

$$
\begin{equation*}
\Delta_{+} \otimes A B C \ldots=\left(\Delta_{+} \otimes A\right)\left(\Delta_{+} \otimes B\right)\left(\Delta_{+} \otimes C\right) \ldots \tag{21}
\end{equation*}
$$

We note that Curtright's (1982) trial and error calculation of the $D=12$ local fields and their massless SO_{10} on-shell states (his table I) is essentially just the content of our table 6 .

Table 6. Branching rules for the antisymmetric tensor irreps of $\mathrm{SU}_{16} \downarrow \mathrm{SO}_{10}$.

$D_{(\lambda)}$	SU_{16}	\downarrow	SO_{10}
16	\{1\}		[$\Delta ; 0]_{+}$
120	$\left\{1^{2}\right\}$		[1 ${ }^{3}$]
560	$\left\{1^{3}\right\}$		[$\left.\Delta ; 1^{2}\right]_{-}$
1820	$\left\{1^{4}\right\}$		$\left[21^{4}\right]++\left[2^{2}\right]$
4368	$\left\{1^{5}\right\}$		$[\Delta ; 21]_{-}+\left[\Delta ; 1^{5}\right]_{-}$
8624	\{1㐌\}		$\left[2^{2} 1^{3}\right]{ }_{-}+\left[31^{2}\right]$
11440	$\left\{1^{7}\right\}$		$\left[\Delta ; 21^{2}\right]^{3}+[\Delta ; 3]_{+}$
12870	$\left\{1^{8}\right\}$		$[4]+\left[2^{3}\right]+\left[31^{3}\right]$

11. Symmetrised powers of SO_{11}

If the symmetrised powers $\Delta_{ \pm} \otimes\left\{1^{n}\right\}$ are known for SO_{10} then we can obtain the corresponding resolutions for $\mathrm{SO}_{11} \Delta \otimes\left\{1^{n}\right\}$. These may be evaluated by noting that under $\mathrm{SO}_{11} \downarrow \mathrm{SO}_{10}$ we have $\Delta \downarrow \Delta_{+}+\Delta_{-}$. The terms in $\left(\Delta_{+}+\Delta_{-}\right) \otimes\left\{1^{n}\right\}$ for SO_{10} may be evaluated by noting that

$$
\begin{align*}
\left(\Delta_{+}+\Delta_{-}\right) \otimes\left\{1^{n}\right\} & =\sum_{x=0}^{n}\left(\Delta_{+} \otimes\left\{1^{x}\right\}\right)\left(\Delta_{-} \otimes\left\{1^{n-x}\right\}\right) \\
& =\sum_{x=0}^{n}\left(\Delta_{+} \otimes\left\{1^{x}\right\}\right)\left(\Delta_{+} \otimes\left\{1^{n-x}\right\}\right)^{+} \tag{22}
\end{align*}
$$

The relevant Kronecker products in $S U_{10}$ may be evaluated and collected together, replacing each $[\lambda]_{+}+[\lambda]$ - pair by just $[\lambda]$, and placing the irrep in order of descending weight. Then under $\mathrm{SO}_{11} \downarrow \mathrm{SO}_{10}$ we have

$$
[\lambda] \downarrow[\lambda]+\ldots
$$

where [λ] is the leading term in the reduction. The SO_{10} content of the irrep of SO_{11} covering the highest weight SO_{10} irrep is removed and then the highest weight of the remaining SO_{10} irreps determined and the process continued. In this way it was possible to resolve $\Delta \otimes\left\{1^{16}\right\}$ for SO_{11} which is of dimension 601080390 . This calculation was facilitated by the use of SCHUR which evaluates sums of Kronecker products and branching rules for strings of representations. Thus, in principle, we can state that it is now posssible to evaluate unambiguously arbitrary symmetrised powers for all irreps of SO_{n} for all $n \leqslant 11$.

Curtright (1982a, b) has made the remarkable observation that the terms arising in the antisymmetric powers of the spinor irrep of SO_{9} are just the terms contained in the squaring of the SO_{9} reducible representation $\left[1^{3}\right]+[2]+[\Delta ; 1]$ implying that for SO_{9}

$$
\sum_{n=0}^{16} \Delta \otimes\left\{1^{n}\right\}=\left(\left[1^{3}\right]+[2]+[\Delta ; 1]\right)^{2}
$$

Inspection of the terms in $\Delta \otimes\left\{1^{16}\right\}$ for SO_{11} show that his result cannot be extended to SO_{11} and would appear to be special to $n=7,8$ and 9 .

The basic spinor of SO_{11} is symplectic and hence can be embedded in the Sp_{32} subgroup of SU_{32}. The graded Lie algebra $\mathrm{OSp}(32 / 1)$ has been used by D 'Auria and

Fré (1982) in $D=11$ supergravity. Their analysis requires the resolution of the symmetric powers of the basic spinor of $\mathrm{SO}(1,10)$ which is equivalent to determining $\Delta \otimes\{n\}$ in SO_{11}. We note that their result for $\Delta \otimes\{4\}$ (their equation 3.3) requires amending to

$$
\Delta \otimes 4=[0]+\left[1^{3}\right]+\left[1^{4}\right]+\left[1^{5}\right]+[2]+[21]+\left[21^{4}\right]+\left[2^{2}\right]+\left[2^{2} 1^{3}\right]+\left[2^{5}\right]
$$

Their erroneous result was compounded by their miscalculation of the dimension of the irrep [2^{5}] which should have been 28314 . Their stated result 32604 is coincidently that of the dimension of $\left[2^{5}\right]+\left[21^{4}\right]$.

D'Auria et al (1982a) have discussed the geometric structure of super Yang-Mills theory making extensive use of p-forms and the group $\mathrm{SO}(1,9)$. It is worth noting that the dimensions of their two-form $\psi^{\alpha} \wedge \psi^{\beta}$ and their three-form $\psi^{\alpha} \wedge \psi^{\beta} \wedge \psi^{\gamma}$ are just those of the SO_{10} spinor plethysms $\Delta_{+} \otimes\{2\}$ and $\Delta_{+} \otimes\{3\}$. Their analysis can be made precise and unambiguous by analysis of the corresponding plethysms. In a similar manner the three-forms used by D'Auria et al (1982b) in their analysis of Bianchi identities may be given in terms of appropriate spinor plethysms. Thus equation (2.27) is equivalent to the resolution of $\Delta \otimes\{3\}$ for O_{4}. The dimensions of their three-forms in $D=4 N$-extended superspace are just those of the $\{3\}$ irrep of $\mathrm{U}_{4 \mathrm{~N}}$. We note that for $N=8$ their result for the dimension of the three-form should be 5984 and not 6160 .

12. Concluding remarks

The preceding remarks emphasise the need for unambiguous methods for evaluating branching rules and symmetrised powers of irreps. Patching dimensions can be fraught with errors (cf Castellani et al 1982). The methods oulined in this paper are unambiguous in their implementation and all exist as part of the computer package schur.

Acknowledgments

We have benefited from helpful conversations and correspondence with Drs P D Jarvis and R C King. Some of this work was stimulated by a conversation (and subsequent preprints) with Dr T Curtright. Finally, we record our indebtedness to the New Zealand Institute of Nuclear Science for loyally maintaining the last New Zealand subscription to Nuclear Physics.

References

Bergshoeff E and DeRoo M 1982 Phys. Lett. 112B 53
Black G R E 1982 PhD Thesis University of Canterbury, New Zealand
Black G R E, King R C and Wybourne B G 1983 J. Phys. A: Math. Gen. 161555
Brauer R and Weyl H 1935 Am. J. Math. 57425
Castellani L, Fré P, Giani F, Pilch K and van Nieuwenhuizen P 1982 Phys. Rev. D 261481
Curtright T 1982a Phys. Rev. Lett. 481704
—— 1982b University of Florida preprint UFTP-82-22
D’Auria R and Fré P 1982 Nucl. Phys. B 201101
D'Auria R, Fré P and DaSilva A J 1982a Nucl. Phys, B 196205

D’Auria R, Fré P, Maina E and Regge T 1982b Ann. Phys., NY 13993
Ferrara S, Savoy C A and Girardello L 1981 Phys. Lett. 105B 363
King R C 1975 J. Phys. A: Math. Gen. 8429
— 1982 Physica A 114345
King R C and Al-Qubanchi A H A 1981 J. Phys. A: Math. Gen. 1415
King R C, Luan Dehuai and Wybourne B G 1981 J. Phys. A: Math. Gen. 142509
King R C and Wybourne B G 1982 J. Phys. A: Math. Gen. 151137
Littlewood D E 1947 Proc. Lond. Math. Soc. 49307
—— 1948 Proc. Lond. Math. Soc. 50349

- 1950 The Theory of Group Characters 2nd edn (Oxford: Clarendon)

Murnaghan F D 1938 The Theory of Group Representations (Baltimore: Johns Hopkins)
Wybourne B G 1970 Symmetry Principles and Atomic Spectroscopy (New York: Wiley-Interscience)

- 1974 Classical Groups for Physicists (New York: Wiley-Interscience)
- 1983 Foundations of Physics 13175

[^0]: ${ }^{\text {a }}{ }_{s_{+}}$represents positive even integers and s_{-}positive odd integers.
 ${ }^{b} q$ is the second part of the two-part partitions (ω) defined in KLW $\S 2$.
 The partitions β are any compatible member of the B series of S functions ($\mathrm{BKW}, 4.5 a$).

