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Branching rules and even-dimensional rotation groups SOzk 

G R E Black and B G Wybourne 
Physics Department, University of Canterbury, Christchurch 1, New Zealand 

Received 21 December 1982 

Abstract. Unambiguous methods are developed for calculating branching rules for the 
classical subgroups of the even-dimensional rotation group s 0 2 k .  Complete results are 
given for the subgroups SUI, X U1, s 0 2 k - 2  X U1, S02, X So2,  and S02p+l X S O Z ~ + I .  A 
number of examples relevant to problems in supergravity and unification .theories are 
given. A complete resolution of the antisymmetric powers of the basic spinor irrep of 
S o l o  is given and the results extended to SOll .  

1. Introduction 

The even-dimensional rotation groups S 0 2 k  are finding extensive application in many 
areas of physics. These applications require a detailed knowledge of the properties 
of the irreducible representations (irreps) of S O Z ~  and have often been fraught with 
ambiguities that are associated with the peculiar properties of the irreps of S 0 2 k .  

Many results have been deduced by trial and error, with some remaining in error. It 
is the purpose of this paper to present, in an unambiguous way, branching rules for 
the tensor and spinor irreps of S 0 2 k  to important classical subgroups. Their application 
is illustrated by a number of examples that also serve to correct a number of erroneous 
or imprecise results already in the literature. 

The character theory of the full orthogonal group 0, has been well studied for 
both spinor and tensor representations (Brauer and Weyl 1935, Murnaghan 1938, 
Littlewood 1950). The corresponding theory for SOZk+l requires only trivial 
modifications. The theory for is complicated by the existence of irreps that, 
while being non-equivalent, are conjugate to one another under an involutary outer 
automorphism involving a matrix of determinant -1. These problems may be resolved 
by use of the properties of the Weyl weight spaces of the irreps but at the expense 
of obscuring the n dependence of the results. In many cases it is desirable to produce 
results that hold for all n. Furthermore, there is some advantage to be gained from 
the construction of explicit formulae for computing branching rules. 

Throughout, we shall employ spinor and tensor methods rather than explicit 
weight-space constructions. These methods have considerable merit in physical appli- 
cations and lead to a notation that is closer to the tools customarily used by physicists. 

Spinor and tensor methods have been used very successfully (King 1975) to derive 
branching rule formulae for the embedding of one classical Lie group in another. The 
formulae all involve operations on S functions (Littlewood 1950, Wybourne 1970). 
King has given extensive results for the groups 0, and S 0 2 k + 1  but omits any treatment 
of S O 2 k  noting that these cases can best be dealt with by the method of difference 
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2406 G R E Black and B G Wybourne 

characters (Murnaghan 1938) or weight-space techniques. In view of the unpreceden- 
ted interest in the groups SOrk, it seems appropriate to extend King’s study to the 
classical subgroups of S02k. 

Our emphasis here is to present new results which are illustrated by examples 
relevant to problems in grand unification and supergravity theories. Branching rules 
fortheimportantgroup-subgroupcombinationsSOzk 2 SUk XU1,SOZk 2 S 0 2 k - 2  X UI, 
SOZ,,+,, 2 SO2, x SOzq, and SOZ,p+q+l) 2 S02p+1 x SOZqtl are given for both spinor 
and tensor irreps. 

Branching rules arise in the group-subgroup restriction GJH. The inverse restric- 
tion HTr G (King 1975) is considered and used to give general results for such cases 
as S02k Tr S02k+2 that arise in supergravity (Curtright 1982a, b). The novel inverse 
restriction SO2k TI S02k+2 x SU2 is used to count the multiplicities of the S02k+2 irreps 
in SOzk TI SOzki2 using the results of an earlier paper on the replication of irreps 
(Wybourne 1983). 

Finally we discuss the resolution of the Kronecker powers of the basic spinor irrep 
of s 0 2 k  and give a complete procedure for unequivocally resolving all the powers of 
the 16 irrep of Solo. Furthermore, we are led to a procedure for determining the 
multiplet content of the d = 10 scalar superfield that ensures the equality of dimensions 
and Dynkin indices for the boson and fermion sectors thus eliminating earlier trial 
and error methods (Curtright 1982a, b) and correcting earlier results (Bergshoeff and 
DeRoo 1982). 

The symmetrised powers of rotation groups have been reviewed extensively by 
King et a1 (1981). Complete, and unambiguous, algorithms for resolving the Kronecker 
products of the rotation groups have also been given (Black et a1 1983). These two 
papers (abbreviated henceforth to KLW and BKW respectively) establish much of the 
notation used in this paper and will be referred to repeatedly. The principal results 
appear as tables whose derivations rest on the work contained in KLW, BKW and the 
pioneering work of King (1975). 

2. Labelling of irreps 

In this paper we shall primarily be interested in the classical compact semi-simple Lie 
algebras Ak, Bk, ck, and D k  and their respective Lie groups SUk+1, S 0 2 k + l ,  Spzk and 
S 0 2 k .  The labelling of the irreps of these groups has been discussed in KLW and BKW 
and only essential details are given here. The irreps may be unambiguously labelled 
by specifying their maximal weights. Equivalent labels may be given either in terms 
of a set of k non-negative integers a = (al, a2,  , .  . , a k )  labelling the nodes of the 
appropriate Dynkin diagram or in terms of suitably defined partitions A = 
( A I ,  A z ,  . . . . , A k )  (cf Wybourne 1974). 

The standard partition labels for the irreps of the classical groups are given in 
table 1 following the notation given by BKW. The relationship between the partition 
labels A and the Dynkin labels a is given in table 2 after the manner of King and 
Al-Qubanchi (1981). In the latter table the irreps of SO,, are assumed to be labelled 
by partitions with the A ;  either all integers (tensor irreps) or all half-integers (spinor 
irreps). 

We write for SO2k for A k  > 0 
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Table 1, Standard labels for the irreps of the classical groups of rank k 

Group G Label Constraint 

A = ( A l A 2 . .  . A p )  with A l P A 2 3 . .  .aAp >o.  

A ,  and pz are positive integers for i = 1, 2, . . . . , p and j = 1, 2 , .  . . q respectively. 
= ( p i p 2 . ,  . p q )  with p 1 2 p 2 3 . .  . 3 p q  > O .  

Table 2. Relationship of Dynkin labels a to partition labels A for the classical Lie groups. 

Lie group 

S U k t l  a ,  = A , - A 2  A l  = a1 + a2 +.  . . + ak- l+  ak 
a2 = A 2  - A 3  A 2 =  a2+  . . .  i a k - , + a k  

S 0 2 k r l  a ,  = A , - A 2  
a2 = A 2 -  A 3  

a ,  = A , - A 2  
a z  = A 2  - A 3  

a l  = A l  - A 2  
a2 = A 2 -  A 3  

A i  = a l  + a2 +.  . .+ ak..l +iak 

A 2  = a2 i . . . + ak -1 + iak 

A ,  = a1 - a2 + . . . +ak-1 i a p  

A 2 =  a 2 + .  . . + a k - l + a k  

A ,  = a l  +a2  +. . . + ak-2 i $ak-,  +$ak 

A 2  = + gak a2 + . . . + ak-2 + 

The spinor irreps will often be written for SOzk+* as 

[ A ; A ] = [ A 1 + t , A z + t ,  . . . ,  A k + t ]  

and for SOZk as 
1 1 [ h ; A l * = [ A l + ~ , A z . t ~ ,  . . . ,  f A k * t ] .  
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Likewise tensor irreps of S 0 2 k  having k non-zero parts will often be written as 

[O; A]* = [A 1 + 1,  A 2  + 1, . . . , * A k  f 13 

with 

[O; 01, = 0, = [F, *1] = [1”*. 

The irreps of the unitary group U,, may be labelled as {A} (Littlewood 1950) where 
the partition A serves to specify the symmetry properties of the corresponding fth-rank 
(I being the sum of the parts of A )  covariant tensor forming the basis of this representa- 
tion. Along with these irreps, there are irreps associated with contravariant tensors 
labelled { f i }  and also irreps whose bases are mixed tensors labelled by { f i  ; A}. In this 
notation the A partition is associated with 1 covariant indices of the basis tensor while 
the barred CL partition is associated with m contravariant indices. It is convenient to 
write 

(6; A }  ={A} and {CL ; 0 )  = {CL}. ( 6 )  

The U, irreps {fi  ; A} may be represented by composite Young diagrams (BKW § 2). 

element onto its determinant with 
The group U,, possesses a one-dimensional irrep E ={1”} that maps each group 

- 
- 1  d = E  ={1”}. (7) 

The product of E with any other irrep of U, is also an irrep of U, and inequivalent 
irreps related by some power are said to be associated. If r is half an odd integer 
then the irrep of U,, is double valued, analogous to the spinor irreps of 0,. 

Since under U,, ISU, we have E J{O} all mutually associated irreps of U,, give 
equivalent irreps of SU, under this restriction. Moreover, each inequivalent irrep of 
SU, may be denoted by a partition into less than n parts. 

3. Modification rules 

While the standard partition labels given in table 1 suffice to completely label the 
irreps of the classical compact Lie groups in many calculations, non-standard labels 
will arise. The equivalence relations between non-standard and standard labels are 
known as modification rules (Murnaghan 1938). These have been extensively discussed 
in BKW. 

Modification rules involving simple equivalences are given in table 3(a) .  Those 
for S 0 2 k  reflect the reducibility of representations labelled by k-part partitions referred 
to earlier. The double primed symbols correspond to difference charactei s (Murnaghan 
1938, BKW § 5, KLW § 4).  

The remaining modification rules relevant to this paper reduce the number of parts 
p in a partition where p > k to yield a standard label or a null result. In each case 
the modification rules amount to removing from the appropriate Young diagram of 
the partition a continuous boundary of hook length h starting at the foot of the first 
column. The relevant set of modification rules of this type are given in table 3(b). 
These rules may be used repeatedly to yield finally either a signed standard irrep 
label or a null result. Detailed examples of their application are given in KLW and BKW. 
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Table 3, Modification rules. 

~~ ~ 

( a )  Group Rule Constraint 

P > n  
p = n  
p + q s n  
p s n  

p = k  
p = k  
p = k  
p = k  
p s k  
p s k  
p s k  
p s k  

( b )  Group Rule Hook length 

SO2ktl [ A ] =  (- l ) ' - ' [A - h ]  
[A;A]=l-l)'[A;A - h ]  

s P 2 k  ( A ) = ( - l ) ' ( A  - h )  

S02k [A]=(-l)'-'[A - h ]  
[ A ; A ] = ( - l ) C I A ; A - h ]  
[A;A]"=(- l ) ' - ' [A;A -h]" 
[A;A]*=(- l ) ' [A;A -h],  
[c]; A ]  = (-l)'-'[O; A - h ]  
[U; A]" = (-l)'[c]; A - h]" 
[a; A]*=(-l)'-'[U; A -h],  

h = p + q - n - l S O  

i = 2 p  - 2 k  - 1 > 0 
h = 2 p  - 2 k  - 2 S O  

h = 2 p  - 2 k  - 2  S O  

h = 2 p  - 2 k  > 0 
h = 2 p  - 2 k  - 1 S 0 
h = 2 p  - 2 k  - 1 > 0 
h = 2 p - 2 k  - 1  SO 
h 2 p  - 2 k  - 2  2 0  
h = 2 p  - 2 k  - 2  8 0  
h = 2 p  - 2 k  - 2  S 0 

( A )  and ( p )  are partitions of p and q respectively. c and d are columns of ( A )  and ( p )  
in which the boundary hook ends. 

4. Branching rules 

The derivation of branching rules given in this paper rests heavily on the results given 
by KLW and BKW making extensive use of the properties of S functions, S-function 
series and the properties of difference characters. A proof for the branching rules for 
S 0 2 k  4 uk has been sketched in BKW. Derivations for subgroups of 0, have been 
given by King (1975, 1982). The results given here are found in a similar manner. 
The decompositions of the vector [l], basic spinors A, A* and A", and of Cl, 0, and 
0" are first determined making use of identities given in KLW and BKW and the 
properties of weight spaces. S-function series are then symbolically manipulated as 
in BKW to finally yield the desired results. 

In presenting our results, attention has been given to producing algorithms that 
avoid overcounting problems. These problems are signalled by the occurrence of 
explicit phase factors in the formulae. In the case of the spin irreps [A; A]* it is always 
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possible to produce a final result free from explicit overcounting or requiring any use 
of difference characters. A similar situation holds for tensor irreps [A] having fewer 
than k parts. 

For tensor irreps [A]* having k parts (or equivalently [O;A],) it is possible to 
produce formulae that avoid any use of difference characters but only at the expense 
of introducing severe overcounting. In these cases difference character methods 
become much more efficient and avoid explicit overcounting. The branching rules for 
the k-part reducible representation [A] and for the difference character [A]” are 
obtained and then the results combined noting that 

[ A  3 = [ A  ]+ + [A I-, [ A  1” = [ A ] +  - [ A  3- (8) 

and 

[ A ] , =  i([A]*[A]”). (9) 

The formulae given herein follow the notation given in BKW and the reader is 
referred to that paper for precise examples of the various letter designated 5’-function 
series (especially equation (4.5) and table 6 of BKW). These results are all incorporated 
in a computer package SCHUR devised by one of us (Black 1982). This program has 
been used to produce the examples given in this paper. 

5. Branching rule for SOrk .1 SUk x U1 

The branching rule for SOzk .1 u k  was given in BKW. The corresponding rule for 
4SUk xu1 is given in table 4(a). Throughout we use U,, up, . . . to stand for 

the sum of parts of the corresponding partitions a, p, . . . . 
Consider the 560-dimensional irrep of SOlo[A; 12]+ under SOloJ, SUS x U1. Referr- 

ing to table 4 ( a )  we have 
- 

[A; 1’]+.1 1 { l * l * ’ ;  l2/5~}x{2-2w5-2s-w,+:} 
S * L P  

I 2  =c ( { l e 1  I ;  1 /5}x{:-2w,-2s}+{F}x{q-2s}) 
s. 5 

where p is restricted to (0 )  and {12} and (6) has been used. Summing over l gives 
( l o a )  as 

with 5 being restricted to the partitions {0}, (1) and {12}. The summation over s is 
restricted by the modification rules to give (106) as 

{ 12} x { P }  + {Ti?; 12} x {3} + { a 2  1 ; 1 } x {i} + {P; P} x {-;} 

+{i.i)x{?}+{i. i  7 ; i}x{(4}+{l.1”; i}x{-$} 

+{le1 7 ; 1 } x { - ~ } + { T Z ) X { ~ } + { i T } x { - ~ } + { 1  n *1 }x{-$}. 
(10C) 

The SUS modification rules in table 3 are now used. Typically {p; 12}={221}, 
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(7; 12}=-{?}=-{l}, (1 ; 1 } = O ,  (1 .1 ; 1}={?; l } + { Z ;  1}={21}+{3221}, etc, 
to give finally 

a 2  7 

[A;  i21+ J {i2) x @I+ ({2211 +{2i3} +{OH x 121 
+ ( {322 1) + (2 1) + 2{ 1 3}) x {f} + ({ 3 1 3} + {23} 

+ {22 1 2 }  + { 1)) x { -2} + (2 1 2} x {- Z } .  

In a similar manner we find for the 3696-dimensional irrep [U; 12], of SO10 

[U; i21+ L {i2i  x (71 + ({221} + (2 17 + (0)) x (5) 
+ ({322} +{3221}+{21}+2{13}) x (3) + ((43’1) 

+{321} +{313} + 2{23} +{2212}+{1}) x{l} 

+({413}+{322}+{3212}+{2}) x{-3}+{312}x{-5}. 

+ ({4221} + {33} +{3’21} +{31} + 2{212}) x (-1) 

We note that in the case of SO2& JU, and SO2& JSUk x U1 it has been possible to 
produce formulae even for the k-part tensor irrep that obviate the need to use 
difference characters. 

Table 4. Branching rules. 

A 

A” 

O 

n 

“0, 

hlU; A It 

a s+ represents positive eoen integers and s- positive odd integers. 

The partitions @ are any compatible member of the B series of S functions (BKW, 4.50). 
4 is the second part of the two-part partitions (0) defined in KLW 8 2. 
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Table 4. (continued) 

A* 
U 
3" 

[A I" 

A X ({t} + {-;I) 
A"x( { i } - { - i } )  
A+ x (f] + A x  X (-f] 

U x ({1},+~-1},+2[1k-2]x{o} 

0" x ({ 11 -(-l}) 

0, x 11) +U, x {-1]+[1 k-2]  x [ O ]  

([A; A / s  . ~ ] + X { S  - t  ++}+[A;  A / f  . t ]*  X{S - 
l , t  

1 [A/S  t ]  x {s - t }  

1 [a; A / l k  'S .I]~~X ({s - r  + I}-{S - t - 11) 

I , !  

1.1 

c! 

3" 

[A 1" 

A X A  

A" x A" 

A,  X l ,  + A -  X L L  
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Table 4. (continued) 

These branching rules are given in tables 4(6) and 4(c). In the case of SOloJSO9 we 
have 

[A; 21],J.[A; 2 1 ] + [ A ;  2 ] + [ A ;  l 2 1 + [ A ;  11 

and 

[A; 15]*.l[A; l 5 1 + [ A ;  14] 

but for SO9 the modification rules give [A; 15] = 0 and hence 

[A; 1’1*L[A; l4I. 

In a similar way under S0loJSO9 

[214]* .1 $([214] + [213] + [ 1 J] + [ 141) = [213] + [ 14]. 

The S 0 2 k  4 S 0 2 k - 2  X U1 branchingrule for the spinor irrep of S 0 2 k  may be evaluated 
without recourse to difference characters. Thus 

[A; 214]+J .1  ([A; 2 1 4 / s t ] + x { s - t + k } + [ A ;  2 1 4 / s t ] - x { s - t - $ } )  
s, r 

= C  ([A; 2 l 4 / t ] + x { $ - r } + ( [ A ;  2 1 3 / t ] + + [ A ;  Is]+) 
r 

X{$-t}+[A; l 4 / t ] + X ( z - t } + .  . . 
= [ A ;  2 l 4 ] + x { k } + ( [ A ;  2 1 3 ] + + [ A ;  l’]+)x{-$}+[A; 14]+ x{-$} 

+([A; 213]++[A;  l5],)x{$}+([A; 212]++[A;  l‘]+)x{$}+[A; 13]+X{-$} 

+[A; 1 4 ] + ~ { $ } + [ A ;  13]+x{$}+. . . 
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=[A; 14]+x(i}+([A; 213]++[A; l’]++[A; l31+{$ 

+([A; 214]++[A; 212]++2[A; 14]+)x{$)+([A; 2l3I++[A; is]+ 

+[A; 13]+)x{-4}+[A; 14]+)X{-5}+. . . 

where the extra terms. . . are obtained by replacing the + subscript by a - subscript 
in the printed terms and subtracting 1 from each U1 irrep label. The above result 
holds for all k 3 6 without modification. For SOlOJSOS x U1 the SOs irrep having five 
parts must be modified to give 

[A; is]+ = -[A; i4]-, [A; 1’3- = -[A; i41+, 
[A; 2i4]+ = -[A; 2i3]-, [A; 214]- = -[A; 213], 

to yield for SOloJ SOS x U1 

[A; 214]+J[A; 14]+ x (6 + ([A; 213]+ +[A; 13]+) x {z} + ([A; 21’1, 

+[A; 14]+ +[A; 13]-) x ($} + ([A; 13]+ +[A; 212]- +[A; 14]-) x {-$} 

+([A; 213]-+[A; 13]-)x(--f}+[A; 1‘1- x{-$}. 

The branching rules for the k-part tensor irreps of S O ~ ~ J S O ~ ~ - Z X U ~  are found 
by first restricting [A] and [A]” and then combining the results using (9). Thus for 
s o l 0 ~ s o S ~ u 1 :  

[2 141  J [ 141 x (2) + [2 1 31 x { 1) + 2[ 141  x (0) + [2 1 3 3  x {- 1) + [ 1 4 1  x (-2) 

[214]q [14y x (2) + [213]lr x (1) - [2 1311, x {-1) - [14]lr x (-2) 

and 

and hence 

[2 i4]+ = 3([2 i4] + [2 i4]y 4 [ i4]+ x (2) + [21 3]+ x {I} 

-t ([i43+ + [ P - )  ~ { 0 } + [ 2 1 ~ ] -  x {-1}+[i4]- x{-2). 

7. Branching rules for SOZ(,+~) J SO2, x SOzq 

These branching rules are given in table 4 ( d ) .  Their evaluation follows closely the 
methods used in the preceding section. Typically, for SOlOJ SO6 x SO4 we have 

[A; 2]+ J [A; 01- x [A; 21- +[A; 01, x [A; 21, +[A; 11.- x [A; 11- +[A; 1]+ 

x [A; 11, + [A; 01- x [A; 1]+ +[A; 01, X [A; 11- +[A; 21- 

x [A; 01- + [A; 21, x [A; 01, +[A; 13- X [A; 01, 

+[A;  1]+ x [A; 01- +[A; 01, X [A; 01- +[A; O],[A; 01, 

and 

[2 141+ J[2 12]+ x [l”+ + [2121- x [l’l- + [2 11 x 111 + [2] x [OI + [13]+ x ([2 11, + [ 13) 

+ [ 1 33- x ([2 13- + [ 13) + [ 1 2] x ([2] + [ 123 + + [ 12]- + [O]) + [ 11 x [ 11. 
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8. Branching rules for S O Z ( ~ + ~ + I ) ~  SOZ,+I X SOZ,+I 

These branching rules are summarised in table 4(e) and present no special problems 
in their applications. Typically for SOIZ & SO, X SOS 

[A; 21]+L[A; O]x([A; 21]+[A; 2]+(A; l2]+2[A; l]+[A; 01) 

+[A; l ] x  ([A; 2]+[A; 12]+2[A; 1]+2[A; 01) 

+ [A; 21 x ([A; 13 + [A; 031 + [A; 1'1 x ([A; 13 + [A; 01) + [A; 2 11 x [A; 01 
and 

[U; 13+ .1[13] x ([21] + [1']+[1], +[2121 x [ 17 +[211 x [ l l  

+ [ l 2 l x  ~ ~ ~ l + ~ ~ 2 1 + ~ ~ l ~ + ~ ~ l ~ ~ ~ 1 + ~ ~ l ~ ~ ~ l .  

9. The inverse of restriction f, 

Branching rules are normally associated with the group-subgroup restriction G&H. 
The inverse of restriction G t r H  has been considered by King (1975) and finds 
applications in supersymmetry theories (cf Curtright 1982a, b). Clearly the operation 
Tr is defined only over classes common to G and H and is not necessarily unique. 
Important cases of T r  for rotation groups are given in table 5 .  The inverse of restriction 

Table 5. Inverses of restriction for rotation groups. 

[A; A I  
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for S 0 2 k  requires the use of reducible representations in the case of spinor representa- 
tions or tensor representations having k parts. Thus for S 0 2 k  T r  S O Z k + l  we have 

[A; A ]  = [A; A ] +  +[A; A] -  T I  [A; A/L]. 

For example 

[A; 211 T I  [A; 21]-[A; 2]-[A; 12]+[A; 11. 

We note that under t r  the need for modification rules never arises. 
Under S O Z k + l  tr S 0 2 k i - 2  we may take either A tr A +  or A T r  A-. The choice of f 

in table 5 reflects this ambiguity. 
The operations SOzk tr S o Z k + Z  x SU2 and tr  SOU+^ x SU2 are somewhat 

novel. The labels of the irreps of SU:! can all be reduced to one part by noting the 
equivalence 

{ A ~ A ~ } = { A ~ - A ~ } .  

A given SU2 irrep { a }  is of dimension a + 1. Thus the 'group' SUI plays the role of 
a 'multiplicity counting group' (Wybourne 1983). 

The S-function series P, L and R are defined in KLW and BKW. Note that R = PL 
and 

[n/21 

n = O  m=O 
L L =  1 1 ( - l ) " ( n  +l-2m){2m1"-2m} 

= {0} - 2{1} + 3{l2}+{2)-4{l3}- 2{21}+ 5{14} + 3{212} +{2'}-. . . , 

For SOlo? SOl2 we have 

pi4]+ + p i 4 ] -  tI [ 2 i 4 / u ]  

= [214] + 3[212] + 4[ 14] + 5[2] + 8[ 1'1 + 5[0] 

- (2[213] +2[15] +4[21]+6[13]+ 10[1]) 

which is identical to Curtright's (1982a, b) result. Curtright divides his SOl2 irrep 
into primary gauge and accompanying ghost fields. It is interesting to note that for 
boson states his primary gauge fields correspond to the terms in [A/K] where K is 
the S-function series 

K ={0}+{2}+{2~}+{2~}+ .  . . . (11) 

The fermionic spinor cases are complicated by the presence of the f subscripts 
that distinguish conjugate irreps. However, the distinction is effectively lost under tr. 
As a consequence a reducible representation [ A ; / \ ]  of S 0 2 k  may be expanded to 
S 0 2 k + Z  by simply writing 

[A; A I  TI [A; A/LLl, (12) 

which is significantly simpler than the result given in table 5 .  It is important to realise 
that while the various results for S O Z k  tr S 0 2 k + 2  appear to involve different representa- 
tions of S 0 2 k + 2  in fact they still preserve the various dimension and Dynkin index 
sum rules. Thus for example, table 5 leads to the expansion of [A;21] under 
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Solo t r  SO12 as 
[A; 21]tr[A; 21]++[A; 2]-+[A; 12]-+10[A; 1]++9[A; 01- 

-(3[A; 2]++3[A; 1]++6[A; 1]-+11[A; O]+) 

while use of (12) gives 

[A; 211 tr[A; 21]++4[A; 1]+-2([A; 2]++[A; lz]++[A; O]+)* 
Curtwright (1982a, b) gives 

[A; 211 tr [A; 211- +[A; 21, +[A; l']+ + 2[A; 13- +[A, 01, 

- (2[A; 21- + 2[A; 1'1- + 2[A; 11, + 2[A; 01- +[A; 21, +[A; lZ]+ +[A; 01,) 

+ 2[A; 11- + 2[A; 1]+, 

Each of the above results satisfies the dimension and Dynkin index sum rules. Since 
these sum rules do not distinguish members of a conjugate pair they can be satisfied 
by any arrangement of the f subscripts. 

Curtright's results were checked using the program SCHUR to perform the restric- 
tion SOl2J SOz x Solo which is a special case of the results given in t;ble 4(e) for 
SOz(p+q, J SOz, X SOz,. Since SCHUR can handle strings of irreps this proved a simple 
task and confirmed all of Curtright's results. 

10. Symmetrised powers of basic spinor irreps 

The resolution of the symmetrised powers of the basic spin irreps A and A* of SOZk+l 
and SOzk respectively has been discussed by KLW who gave a complete algorithm for 
up to the fourth power for all k (see also King and Wybourne 1982). In general these 
resolutions correspond to evaluation of the spinor plethysms (cf Littlewood 1947, 
1948, 1950) 

A 0 {A)  for SOZk+l (13a) 

where for the pth power in A (or A*) {A} is a partition of p .  
Equivalently, the evaluation of the above spinor plethysms can be regarded as an 

evaluation of the branching rules for the unitary group irrep {A} under the restriction 

u2* SOZk+l where (1)J A (14a) 

UZ" JS02k where {l}JA, (146) 
or 

where in (146) if we choose {1}$A+ then {i}JA-, The plethysms A 0 (1") or A* 0 (1") 
correspond to the reduction of an antisymmetric tensor (1") under the rotation 
group-a problem of considerable relevance in supersymmetric theories (Bergshoeff 
and DeRoo 1982). Such a problem may also be viewed as taking a set of fermions 
spanning A (or A,) and forming all possible antisymmetric states. The terms with n 
even yield tensor irreps while those with n odd yield spinor irreps. The complete set 
of states span the vector irrep {I) of S U ~ ,  where a = 2k for S O Z ~ + ~  or 2'k-1) for SOZk. 
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Under the restriction SUZ, .1SOUil we have (Wybourne 1974) 

(1) 1 A. 

Further restriction to SO, gives 

(1) J A LA+ + A-. (16) 

These two irreps, A+ and A-,  have the same dimensions and set of Dynkin indices. 
Still further restriction to SUP - 1  (or SUzk-2) is possible using the SOZ, &U, rule to give 

A+J{0}+{12}+. . .+{ lP}  (17a) 

giving equality between the boson and fermion states with corresponding assurance 
of equal Dynkin index summations in both sectors (Curtright 1982a, Ferrara et a1 
1981). 

Finally the reduction SUZ*-l J S O Z ~ + ~  (or SUzk-2LSOzk) may be made by evaluating 
the spinor plethysm A 0 (1") (or A, 0 {l"}). 

In the specific case of the 16-dimensional irrep A+ of SOlo we have the group chain 

U65536 1 so33.1 so321 su16 4 solo- 
Under SO32 1 SUI6 we have 

A +  .1 {o} + (1') + {i4} + . . . + {I 16} (18a) 

and 

~ - ~ { 1 } + { 1 ~ } + { 1 ~ } + .  . .+{115}. 

The reductions for SU16 4 SOlo may be readily deduced by first using KLW to evaluate 
A+ 0 (1") for n s 4 .  The case for n = 5 to 8 can be constructed from these results 
using the results of BKW to evaluate Kronecker products. We give the results for 
n = 0 to 8 in table 6. The terms for n > 8 can be found by recalling the involutory 
outer-automorphism for SOzk which gives 

(19) A +  0 {116-"}  = (A+ 0 {l"})' 

([A Id' = [A IF. 
recalling that under ' we have 

(20) 
The results in table 6 are in agreement with the results of Bergshoeff and DeRoo 

(1982) but with the important difference that the ambiguity between the [A]* irreps 
is removed. 

We note that once A+O{l"} over all compatible n is known then any other 
symmetrised power of A+, say A+ 0 {A}, may be evaluated since any S function {A} 
may be expanded as a sum of products of the S functions (1") and furthermore 

A+OABC. .  . = ( A + O A ) ( A + O B ) ( A + O C ) .  . . . (21) 

We note that Curtright's (1982) trial and error calculation of the D = 12 local fields 
and their massless S o t o  on-shell states (his table I) is essentially just the content of 
our table 6. 



Rotation groups S O Z ~  2419 

Table 6. Branching rules for the antisymmetric tensor irreps of su16lso1@ 

D w  

16 
120 
560 

1820 
4 368 
8 624 

11  440 
12 870 

11. Symmetrised powers of SO11 

If the symmetrised powers A,0{1"} are known for Solo then we can obtain the 
corresponding resolutions for SOll A 0 {l"}. These may be evaluated by noting that 
under SOll JSOlo we have A J  A+ +A- .  The terms in (A+ +A-) 0 (1") for Solo may 
be evaluated by noting that 

The relevant Kronecker products in SOlo may be evaluated and collected together, 
replacing each [ A ] +  + [ A ] -  pair by just [ A ] ,  and placing the irrep in order of descending 
weight. Then under SOl1.1 SO10 we have 

[AlJ[Al+. . . 
where [ A ]  is the leading term in the reduction. The SOlo content of the irrep of SOll 
covering the highest weight SOlo irrep is removed and then the highest weight of the 
remaining SOlo irreps determined and the process continued. In this way it was 
possible to resolve A 0 {116} for SOll which is of dimension 601 080 390. This calcula- 
tion was facilitated by the use of SCHUR which evaluates sums of Kronecker products 
and branching rules for strings of representations. Thus, in principle, we cah state 
that it is now posssible to evaluate unambiguously arbitrary symmetrised powers for 
all irreps of SO, for all n s 11. 

Curtright (1982a, b) has made the remarkable observation that the terms arising 
in the antisymmetric powers of the spinor irrep of SO9 are just the terms contained 
in the squaring of the SO9 reducible representation [13]+ [2] + [A; 11 implying that for 
so9 

16 1 A0{1"}=([131+[21+[A; 11)2. 
n=O 

Inspection of the terms in A 0 {116} for SOlt show that his result cannot be extended 
to SOll and would appear to be special to n = 7, 8 and 9. 

The basic spinor of SOll is symplectic and hence can be embedded in the Sp32 
subgroup of  SUS^. The graded Lie algebra OSp(32/1) has been used by D'Auria and 
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Fre (1982) in D = 11 supergravity. Their analysis requires the resolution of the 
symmetric powers of the basic spinor of SO(1, 10) which is equivalent to determining 
A O { n )  in SOll. We note that their result for AO(4) (their equation 3.3) requires 
amending to 

A 0 4 = [O]  + [13] + [14j + [15] + [2] + [21] +[214] +[2’] + [2*13] + [2’]. 

Their erroneous result was compounded by their miscalculation of the dimension of 
the irrep [25] which should have been 28 314. Their stated result 32 604 is coincidently 
that of the dimension of [2’] + pi4]. 

D’Auria er a1 (1982a) have discussed the geometric structure of super Yang-Mills 
theory making extensive use of p-forms and the group SO(1,9).  It is worth noting 
that the dimensions of their two-form A +bo and their three-form $a A 4’ A 4’ are 
just those of the SOlo spinor plethysms A +  @ {2) and A+ 0 (3). Their analysis can be 
made precise and unambiguous by analysis of the corresponding plethysms. In a 
similar manner the three-forms used by D’Auria et a1 (1982b) in their analysis of 
Bianchi identities may be given in terms of appropriate spinor plethysms. Thus 
equation (2.27) is equivalent to the resolution of A C3 (3) for 04. The dimensions of 
their three-forms in D = 4 N-extended superspace are just those of the (3) irrep of 
U4N. We note that for N = 8 their result for the dimension of the three-form should 
be 5984 and not 6160. 

12. Concluding remarks 

The preceding remarks emphasise the need for unambiguous methods for evaluating 
branching rules and symmetrised powers of irreps. Patching dimensions can be fraught 
with errors (cf Castellani er a1 1982). The methods oulined in this paper are unam- 
biguous in their implementation and all exist as part of the computer package SCHUR. 
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